Haar type and Carleson Constants
نویسندگان
چکیده
For a collection E of dyadic intervals, a Banach space X, and p ∈ (1, 2] we assume the upper lp estimates
منابع مشابه
Fffffffff Dd Pppppp
is the most fundamental example. Much like in the classical case of the Lebesgue di erentiation theorem, pointwise convergence almost everywhere of the inverse Fourier transform to f ∈ Lp (R) can be reduced to Lp bounds for the maximal operator C. Weak type L2 bounds were rst obtained by Lennart Carleson in 1966 [8], thus providing a surprising a rmative solution to the question of pointwise co...
متن کاملPermutations of the Haar system
Let us briefly describe the setting in which we are working. D denotes the set of all dyadic intervals contained in the unit interval. π : D → D denotes a permutation of the dyadic intervals. The operator induced by π is determined by the equation TπhI = hπ(I) where hI denotes the L∞-normalised Haar function supported on the dyadic intervall I. The main result of this paper treats general permu...
متن کاملOn weighted norm inequalities for the Carleson and Walsh-Carleson operator
We prove L(w) bounds for the Carleson operator C, its lacunary version Clac, and its analogue for the Walsh series W in terms of the Aq constants [w]Aq for 1 q p. In particular, we show that, exactly as for the Hilbert transform, ‖C‖Lp(w) is bounded linearly by [w]Aq for 1 q < p. We also obtain L(w) bounds in terms of [w]Ap , whose sharpness is related to certain conjectures (for instance, of K...
متن کاملA New Twist on the Carleson Operator
Must the Fourier series of an L function converge pointwise almost everywhere? In the 1960’s, Carleson answered this question in the affirmative, by studying a particular type of maximal singular integral operator, which has since become known as a Carleson operator. In the past 40 years, a number of important results have been proved for generalizations of the original Carleson operator. In th...
متن کاملCarleson Measures on Dirichlet-type Spaces
We show that a maximal inequality holds for the non-tangential maximal operator on Dirichlet spaces with harmonic weights on the open unit disc. We then investigate two notions of Carleson measures on these spaces and use the maximal inequality to give characterizations of the Carleson measures in terms of an associated capacity.
متن کامل